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Introduction
 DATA===>INFORMATION===>KNOWLEDGE

is fundamental for our existence.
 We propose a fundamental approach to

transforming data into knowledge.
 A generic data sharing model providing access

to data utilising and generating entities.
 An unsupervised and supervised modelling

demonstrated via simulated and real data
 Accuracy and reliability
 Multidisciplinarity

 Impact on STI-the social transformation engine
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Rationale and Motivation
 Systems sustainability

 Ecosystem - organisms, air water, soil, sunlight
 Social infrastructure - business, environment...

 Tapping into data and information flow has
always been an integral part of the human race

 Disparate approaches imply knowledge gaps…
 Social computing (Wang et al., 2007)
 Scientific computing (Rushing et al., 2005)
 Ubiquitous computing as well as web and business

computing discussed by many authors.

 Knowledge extraction from data remains in a
finite scope of time, concept, data and location.
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Aims and objectives…

 Highlighting the influence of information flow in
generating knowledge from data and use it as a
mean and output in social transformation via...

 A framework for implementing a coherent data
flow system across disciplines and regions

 Extracting and utilising knowledge from data as a
basis for effecting successful applications of STI



6

Some basic considerations

 Data-based decision errors are typically attributed to
disparities in data sources and modelling techniques.

 Geographically diverse data, software and hardware
resources can now be aggregated as a platform to create
dynamic, adaptive and robust knowledge tools and
products with universally acceptable attributes.

 The complex nature of socio-economic systems entails
diverse knowledge domain issues which must be
properly addressed for the aggregated knowledge to be
recognised as a tool and product of social transformation.
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Methodology – data description

 Simulated data: 500 simulations from a uniform
distribution and 500 corresponding coefficients
for each data point labelled -1 and 1 such that

 Real data: 199 observations on 8 variables
condensed into two super-attributes.

 In both cases natural groupings are induced.
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Modelling methods
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where K(.) in SM is a p-variate spherically symmetric density
function and S is a symmetric positive definite matrix
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Iterating to handle allocation rule errors…

The challenge is to minimise the error
while maintaining model reliability
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Simulated data results
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Real data results
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Seven kernels - Gaussian, Epanechnikov, Rectangular,
Triangular, Biweight, Cosine and the Optcosine. Focus is on the
choice of the key parameters (eg bandwidth) method-data
relationship
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Predictive modelling…

The challenge is to minimise the error
while maintaining model reliability
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Data-generated parameters for model
updating: Neural networks model 1

 An NN model with 5 hidden neurons, a logisticAn NN model with 5 hidden neurons, a logistic
activation and an additive combinationactivation and an additive combination
functions was fitted for a maximum likelihoodfunctions was fitted for a maximum likelihood
function. Optimal model reached after 17function. Optimal model reached after 17
iterationsiterations -- low accuracy (27.85% and 37.29%)low accuracy (27.85% and 37.29%)



14

Re-labelled date: Neural networks model 2

 ReRe--labelling data using means patterns yieldedlabelling data using means patterns yielded
a very high accuracy of approximately 0.5%a very high accuracy of approximately 0.5%
and an important featureand an important feature –– resisting overresisting over--fittingfitting
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The proposed data housing shell

 All the foregoing ideas could be embedded intoAll the foregoing ideas could be embedded into
a cohesive knowledge generating systema cohesive knowledge generating system
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Data housing shell levels explained
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Summary
 Natural and social dynamics cause changes in

socio-techno attributes - government policies,
consumer behaviour, gene mutation, carbon
emission and related technologies.

 Result - concept drift (see Karnick, 2008) - key
properties of predictive model outputs change

 Apparently, these dynamics impinge on the
overall accuracy and reliability of the models
which is what the focus of the proposed model
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And before you ask...

 Only a handful issues have been addressed inOnly a handful issues have been addressed in
this paper. Challenges remainthis paper. Challenges remain -- modelmodel
complexity and intercomplexity and inter--regional policies/issues.regional policies/issues.

 The money? We try free lunch, when we canThe money? We try free lunch, when we can
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ANY QUESTIONS?
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